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1. Motivation 
 

•  Tracking problem in control, Suppose that )(0 tx  is a solution of )(xgx =  as a 

reference trajectory. Let 0 ( )e x x t= − . Then, 

0 0 0 0( ) ( ) ( ( )) ( ( )) ( ( )) : ( , )e x x t g x g x t g e x t g x t f t e= − = − = + − =   . 

If the equilibrium 0e =  of the error equation ( , )e f t e=  is AS, then we say that 

x  tracks a reference trajectory )(0 tx . The origin 0e =  of the time-varying 

system ( , )e f t e=  corresponds to the reference solution of the time-invariant 

system )(xgx = ! Although the reference system is autonomous, we have to solve 

a time-varying system for a tracking problem.  
•  There are many problems like nonholonomic systems that are autonomous. They 

need a time-varying feedback to control such systems, so they are time-varying 
systems. Nonholonomic problems have many applications in control, like rigid 
robot models, underwater ship models, etc.. This is a hot line of research in control 
and applications.  

•  In Math itself, time-varying systems are a natural extension of autonomous 
systems. However, the three important properties of autonomous systems are no 
longer true for time-varying systems. So the study of time-varying systems will be 
much complicated and tough as we expect.  

 
2. Equivalent Definitions for Lyapunov Stability 
 
    Consider the time-varying system 

),( xtfx = ,                          (14.1) 

where f  is continuous and locally Lip. in x  on D×∞),0[ , and nD R⊂  is a 
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domain containing the origin, and ( , 0) 0f t ≡ , 0t∀ ≥ . 

 
1) Comparison Function: Class K  and Class KL  
 

Definition 14.1 A continuous function α : ),0[),0[ ∞→a  is of class K  if it is 

strictly increasing and 0)0( =α , denoted by K∈α . It is class K ∞  if ∞=a  and 

∞→)(rα  as ∞→r , Kα ∞∈ . 

 

Definition 14.2 A continuous function β : ),0[),0[),0[ ∞→∞×a  is of class KL  if , 

for each fixed s , ),( srβ  is class K  w.r.t. r  and, for each fixed r , ),( srβ  is 

decreasing w.r.t. s  and 0),( →srβ  as ∞→s . 

 
Example 14.1  

•  1( ) tanr rα −=  ↑  since 2

1( ) 0
1

r
r

α = >
+

 . It is of class K , but not of class K ∞  

since ∞<=
∞→ 2

)(lim πα r
r

. 

•  ( ) cr rα =  ↑  for any 0>c  since 1( ) 0cr crα −= > . Moreover, ∞=
∞→

)(lim r
r

α ; 

thus, it is of class K ∞ . 

• ( , )
1

rr s
k sr

β =
+

 ↑  in r  for any 0>k  since 2

1 0
( 1)r k sr

β∂
= >

∂ +
 and ↓  in 

s  since 
2

2 0
( 1)

kr
s k sr
β∂ −
= <

∂ +
. 

  Moreover, 0),( →srβ  as ∞→s . Hence, it is of class KL . 

•  ( , ) c sr s r eβ −= , for 0>c , is of class KL . 

 

Lemma 14.1 Let 1( )α ⋅  and 2 ( )α ⋅  be of class K  functions on ),0[ a , 3 ( )α ⋅  and 

4 ( )α ⋅  be of class K ∞  functions, and ),( srβ  be of class KL  function. Then, 
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1( )jα − ⋅  is defined on 1[0, ( ))aα  and is of class K ; 1
3 ( )α − ⋅  is defined on ),0[ ∞  and 

is of class ∞K ; 1α α 2α  is of class K ; 3α α 4α  is of class K ∞ ; 

1 2( , ) ( ( ( ), ))r s r ss α β α=  is of class KL . 

 
Remark 14.1 Class K  and KL  functions are important tools in analysis of 
nonlinear systems.  
 
2) Equivalent Definitions of Uniform Stability 
 
Lemma 14.2 The origin 0=x  of (14.1) is 

•  uniformly stable (US in short) ⇔  ∃  ( )α ⋅ ∈ K  and 0>c , independent of 

0 0t ≥ , such that 

0 0 0|| ( ; , ) || (|| ||)x t t x xα≤ , 0 0t t∀ ≥ ≥ , 0|| ||x c∀ < ;       (14.2) 

•  uniformly asymptotically stable (UAS in short) ⇔  ∃  ( , )r sβ ∈ KL  and 0>c , 

independent of 0 0t ≥ , such that 

0 0 0 0|| ( ; , ) || (|| ||, )x t t x x t tβ≤ − , 0 0t t∀ ≥ ≥ , 0|| ||x c∀ < ;   (14.3) 

•  uniformly globally asymptotically stable (UGAS in short) ⇔  (14.3) is satisfied 

for any 0
nx R∈ . 

•  exponentially stable (ES) if (14.3) is satisfied with ( , ) sr s kre γβ −= . 

•  globally exponentially stable (GES) if (14.3) is satisfied with ( , ) sr s kre γβ −=  for 

any 0
nx R∈ .  

 
Remark 14.2 For time-varying systems, GAS and UGAS are different. For example,  

1
xx

t
= −

+
  

has a solution 0
0

1
( )

1
t

x t x
t

+
=

+
. It is GAS. However, it is not UGAS by contradiction. 

If there exists KLβ ∈  s.t. for all 0 0t t≥ ≥ , 0
0 0 0

1
| ( ) | | | (| |, )

1
t

x t x x t t
t

β
+

= ≤ −
+
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could be satisfied, we would have  

0
0

0

11 (1,1 )
2 2 2

t
t

t
β

+
= ≤ +

+
 

by taking 0 1x =  and 0 02 1 0t t t= + > ≥ . Since 0(1,1 ) 0tβ + →  as 0 0t → , this 

contradiction shows that GAS and UGAS are different.  
  
3) Some Important Auxiliary Results 
 
Lemma 14.3 Consider a scalar equation 

( )y yα≤ − , 0 0( )y t y=  

where ( ) Kα ⋅ ∈  is a locally Lip., defined on ),0[ a . For all 00 y a≤ ≤ , this equation 

has a unique solution defined for all 0t t≥ . Moreover, 

0 0( ) ( , )y t y t ts≤ − , 

where ( , )r ss ∈ KL  defined on ),0[),0[ ∞×a . 

 
Remark 14.3 This comparison lemma is very useful for analysis of Lyapunov 
stability. The proof itself is simply application of the comparison principle.  
 

Lemma 14.4 Let 0)( >xV  be positive definite, where nx D R∈ ⊂ , and rB D⊂  

where 0>r . Then, ∃  1( )α ⋅ , )(2 ⋅α ∈ K , defined on [0, )r , such that 

1 2(|| ||) ( ) (|| ||)x V x xα α≤ ≤                     (14.4)              

for all rx B∈ . Moreover, if nD R=  and )(xV  is radially unbounded, then 1( )α ⋅  

and 2 ( )α ⋅  can be chosen to be of class K ∞  and (14.4) holds for all nx R∈ .  

 
Remark 14.4 All the proofs of these Lemmas can be found in “Nonlinear Systems” 
3rd ed. by H. Khalil, Prentice Hall, Upper Saddle River, NJ, 2002. Here all are 
omitted.  
    
4) Lyapunov Theorem for Time-Varying Systems 
 

Theorem 14.1 Let RDV →×∞),0[:  be of 1C  such that 
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1 2( ) ( , ) ( )W x V t x W x≤ ≤ ;                    (14.5) 

( , ) 0V V f t x
t x

∂ ∂
+ ≤

∂ ∂
,                     (14.6) 

for all 0t ≥ , and all x D∈ , where ( )jW x  ( 1, 2j = ) are positive definite. Then, 

0=x  of (14.1) is US. If nD R= , and 1( )W x  is radially unbounded, then the origin 

is uniformly globally stable.  

Proof. Since the derivative of ( , )V t x  along trajectories of (14.1) is given by 

( , ) ( , ) 0V VV t x f t x
t x

∂ ∂
= + ≤
∂ ∂

 , 

we choose 0>r  and 0>ρ  such that rB D⊂  and 1|| ||
min ( )
x r

W xρ
=

< . Then, 

1{ | ( ) }rx B W x ρ∈ ≤ ⊂ rB . 

Define a time-dependent set ,t ρΩ  by 

,t ρΩ = { | ( , ) }rx B V t x ρ∈ ≤ . 

Since 2 ( )W x ρ≤  ⇒  ρ≤),( xtV , we have  

2 ,{ | ( ) }r tx B W x ρρ∈ ≤ ⊂ Ω . 

On the other hand, ρ≤),( xtV  ⇒  1( )W x ρ≤  yields , 1{ | ( ) }t rx B W xρ ρΩ ⊂ ∈ ≤ . 

Thus, 

2{ | ( ) }rx B W x ρ∈ ≤ ,t ρ⊂ Ω ⊂ 1{ | ( ) }rx B W x ρ∈ ≤ rB⊂  for all 0≥t . 

These five nested sets are sketched in Fig. 14.1.  

       
Fig. 14.1 
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For any 0 0t ≥ , and any 
00 ,tx ρ∈Ω , the solution 0 0( ; , )x t t x  stays in ,t ρΩ  for all 

0t t≥  because 0 0( , ( ; , )) 0V t x t t x ≤  ⇒  0 0 0 0 2 0( , ( ; , )) ( , ) ( )V t x t t x V t x W x ρ≤ ≤ ≤  

for all 0t t≥ . Therefore, 0 0( ; , ) rx t t x B∈  and 0 0( ; , )x t t x  is defined for all 0t t≥ .  

    By Lemma 14.4, there exist 1α  and 2α K∈ , defined on [0, ]r , such that 

1 1( ) (|| ||)W x xα≥ , 2 2( ) (|| ||)W x xα≤ . 

Then, we have  

1 0 0 0 0 0 0 2 0 2 0(|| ( ; , ) ||) ( , ( ; , )) ( , ) ( ) (|| ||)x t t x V t x t t x V t x W x xα α≤ ≤ ≤ ≤ . 

From which we conclude that  
1

0 0 1 2 0 0|| ( ; , ) || ( (|| ||)) (|| ||)x t t x x xα α α−≤ = , 

where Kα ∈  by Lemma 14.1. Therefore, the origin is US by Lemma 14.2.  

    If nD R= , 1α , 2α K ∞∈ . Hence, 1α  and 2α  are independent of 0ρ > . 

Since 1( )W x  is radially unbounded, we can choose 0ρ >  such that 1
0 2|| || ( )x α ρ−≤ . 

Then, 0x ∈ 2{ | ( ) }nx R W x ρ∈ ≤ . This shows that the origin is globally uniformly 

stable. □ 
 

Theorem 14.2 Let RDV →×∞),0[:  be of 1C  such that 

1 2( ) ( , ) ( )W x V t x W x≤ ≤ ;                     (14.5) 

)(),( 3 xWxtf
x
V

t
V

−≤
∂
∂

+
∂
∂ , 0t∀ ≥ , x D∀ ∈ ,    (14.7) 

where ( )jW x  ( 1, 2, 3j = ) are positive definite. Then, 0=x  of (14.1) is UAS. If 

nD R= , and 1( )W x  is radially unbounded, then the origin is UGAS.  

Proof. We go on with the proof of Theorem 14.1, we know that 0 0( ; , ) rx t t x B∈  and 

0 0( ; , )x t t x  is defined for all 0t t≥ . Suppose that 0 2{ | ( ) }rx x B W x ρ∈ ∈ ≤ . By 

Lemma 14.4, there exist 3α K∈ , defined on [0, ]r , such that 3 3( ) (|| ||)W x xα≥ . 

Hence, we have 

1 2(|| ||) ( , ) (|| ||)x V t x xα α≤ ≤ ; 
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3( , ) (|| ||)V t x xα≤ − . 

Consequently, 
1

3 3 2(|| ||) ( ( )) ( )V x V Vα α α α−≤ − ≤ − = − . 

Assume, without loss of generality, that ( )α ⋅  is locally Lip. Let )(ty  be the 

solution of  

( )y yα= − , 0 0 0( ) ( , ) 0y t V t x= ≥ . 

By the comparison principle, we have  

  0 0( , ( ; , )) ( )V t x t t x y t≤ , 0t t∀ ≥ . 

By Lemma 14.3, there exists ),( srs ∈ KL  defined on ),0[),0[ ∞×a  such that 

   0 0 0 0 0( , ( ; , )) ( ) ( ( , )), )V t x t t x y t V t x t ts≤ ≤ − , for any 0 0( , ) [0, ]V t x ρ∈ . 

Therefore, any solution starting in ,t ρΩ  satisfies the inequality 

       1 1
0 0 1 0 0 1 0 0 0|| ( ; , ) || ( ( , ( ; , ))) ( ( ( , ), ))x t t x V t x t t x V t x t tα α s− −≤ ≤ −  

   1
1 2 0 0 0 0( ( (|| ||), )) (|| ||, )x t t x t tα s α β−≤ − = − .  

By Lemma 14.1 it shows that ),( ⋅⋅β  is of class KL  function. Thus, the inequality 

(14.3) is satisfied for all 0 2{ | ( ) }rx x B W x ρ∈ ∈ ≤ , which implies that 0=x  is UAS.  

    If nD R= , 1( )W x  is radially unbounded, so is 2 ( )W x  by (14.5). Therefore, 

we can find 2 Kα ∞∈  s.t. 2 2( ) (|| ||)W x xα≤ . For any 0
nx R∈ , we choose 0ρ >  

such that 1
0 2|| || ( )x α ρ−≤ . Then, 0x ∈ 2{ | ( ) }nx R W x ρ∈ ≤ . The rest of the proof is 

the same as the above part for showing UAS. □ 
 

Remark 14.5 ),( xtV  satisfying the left inequality of (14.5) is said to be positive 

definite; and satisfying the right inequality of (14.5) is said to be decrescent. ( , )V t x  

satisfying (14.5) and (14.7) is called a strict Lyapunov function. If 3 ( )W x  is 

positive semi-definite in (14.7), ),( xtV  satisfying (14.5) and (14.7) is called a 

Lyapunov function.  
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Remark 14.6 2{ | ( ) }rx B W x ρ∈ ≤  can be taken as the estimate of the region of 

attraction since ( )jW x  ( 1, 2j = ) are positive definite.   

   
Remark 14.7 UGAS is concerned by control for time-varying systems.  
 

If ( ) c
j jr k rα = , we have the following result for exponential stability. 

 
Corollary 14.1 Suppose all the assumptions of Theorem 14.2 are satisfied with 

1 1( ) || || cW x k x≥ , 2 2( ) || || cW x k x≤ , 3 3( ) || || cW x k x≥  

for 0jk > , and 0c > . Then, 0=x  is ES. Moreover, if the assumptions hold 

globally, then 0=x  is GES. 

Proof. V and V  satisfy the inequalities  

1 2|| || ( , ) || ||c ck x V t x k x≤ ≤ ; 

3
3

2

( , ) || || ( , )c k
V t x k x V t x

k
≤ − ≤ − . 

By the comparison lemma, 

3
0 0 0

2

( , ( )) ( , ( )) exp{ ( )}
k

V t x t V t x t t t
k

≤ − − . 

Hence, 

    

1

31
0 0 0

2

1 1

( , ( )) exp{ ( )}
( , ( ))|| ( ) ||

c

c

k
V t x t t t

kV t x tx t
k k

 
− −    ≤ ≤        

 

 

       

1

3
2 0 0 1

2 2 3
0 0

1 1 2

|| ( ) || exp{ ( )}
( ) || ( ) || exp{ ( )}

c
c

c

k
k x t t t

k k k
x t t t

k k k

 
− − 

 ≤ = − −
 
  
 

. 

Hence, the origin is ES. If all the assumptions hold globally, the above inequality 

holds for all 0( ) nx t R∈ . □ 
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Example 14.3 Consider  
3(1 ( ))x g t x= +  

where )(tg  is continuous and 0)( ≥tg  for all 0≥t . Using the Lyapunov function 

candidate 21( ) 0
2

V x x= > , we obtain 

      4 4(1 ( )) 0V g t x x= − + ≤ < , x R∀ ∈ , 0t∀ ≥ . 

Hence, the origin is UGAS. 
 
Example 5.15 Consider  

1 1 2

2 1 2

( )x x g t x
x x x

= − −
 = −





 

where )(tg  is continuously differentiable and satisfies 

ktg ≤≤ )(0  and )()( tgtg ≤ , 0t∀ ≥ . 

Take 2 2
1 2( , ) (1 ( ))V t x x g t x= + +  , satisfying 

2 2 2 2
1 2 1 2( , ) (1 )x x V t x x k x+ ≤ ≤ + + , 2x R∀ ∈ . 

Then, 2 2
1 1 2 2( , ) 2 2 (2 2 ( ) ( ))V t x x x x g t g t x= − + − + −

 , Using the inequality 

2)()(22)()(22 ≥−+≥−+ tgtgtgtg  , ⇒  

1 12 2
1 1 2 2

2 2

2 1
( , ) 2 2 2 : 0

1 2

T

Tx x
V t x x x x x x Q x

x x
   − 

≤ − + − = − = − <    −    
 , 

where Q  is positive definite; hence, ),( xtV  is negative definite. The origin is GES. 

 
4. Converse Lyapunov Theorem 
 
Theorem 14.3 Let 0=x  be equilibrium for the time-varying system 

),( xtfx = ,                        (14.1). 

where :[0, ) n
rf D R∞ × →  is continuous and locally Lip. in x on 

{ | || || }n
rD x R x r= ∈ < . Assume that for any 0 0( , ) [0, ) rt x D∈ ∞ × , the solution 

0 0( ; , )x t t x  of (14.1) satisfies  
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0 0 0 0|| ( ; , ) || ( || ||, )x t t x x t tβ≤ − , 
00 rx D∀ ∈ , 0t t≥ ,        (14.8) 

where 
0 0 0{ | || || , ( ,0) }n

r rD x R x r r r Dβ= ∈ < < ⊆ . Then, there exists a continuous 

function ( , )V t x  of 1C  that satisfies  

                  1 2(|| ||) ( , ) (|| ||)x V t x xα α≤ ≤ ;                  (14.9) 

3( , ) (|| ||)V t x xα≤ − ,                     (14.10) 

where j Kα ∈ ( 1, 2, 3j = ). Moreover, if (14.8) holds globally, then, (14.9) and (14.10) 

hold globally, where j Kα ∞∈ .  

Proof. First of all, for any 
00 rx D∈ , 0 0( ; , ) rx t t x D∈  for all 0t t≥ . 

0rD  is a 

suitable region of attraction.  

For any ( , )s t KLβ ∈ , there exists , Kα γ ∈ , ( K ∞  for global case) s.t.  

( ( , )) ( ) exp{ }s t s tα β γ≤ − .                 (14.11) 

Remark 14.8 (14.11) is a very useful estimate for analysis of Lyapunov stability. It 
was shown by E. Sontag. Since my proof of this converse theorem is nontrivial, 
different from the traditional one. My proof is nonlocal constrained.  

Define ( , )V t x  as follows. 

0

0 0
0

1( , ) : sup (|| ( ; , ) ||) exp{ }
2t

V t x x t t t x tα
≥

= + , 

where 0( ; , )x t t t x+  is a solution of (14.1). Taking 0 0t =  yields  

1( , ) (|| ( ; , ) ||) (|| ||) : (|| ||)V t x x t t x x xα α α≥ = = . 

Meanwhile, by (14.11), we have  

0 0

0 0 0 2
0 0

1 1( , ) sup ( (|| ||, )) exp{ } (|| ||) supexp{ } (|| ||) : (|| ||)
2 2t t

V t x x t t x t x xα β γ γ α
≥ ≥

≤ ≤ − ≤ = . 

The derivative of ( , )V t x  along trajectories of (14.1) is given  

0 0

( , ( ; , )) ( , ( ; , )) ( , ) ( , )( , ) lim lim
h h

V t h x t h t x V t x t t x V t h x V t xV t x
h h→ →

+ + − + −
= = , 

where ( ; , )x x t h t x= + . Since   
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0

0 0
0

1( , ) : sup (|| ( ; , ) ||) exp{ }
2t

V t x x t h t t h x tα
≥

= + + +       

0

0 0
0

1sup (|| ( ; , ) ||) exp{ }
2t

x t h t t x tα
≥

= + +  

                     
0

0 0
0

1 1sup (|| ( ; , ) ||) exp{ }exp{ }
2 2t

x t t t x t hα
≥

≤ + −  

                     1( , ) exp{ }
2

V t x h= − , 

we have  

0 0

1exp{ } 1( , ) ( , ) 12( , ) lim lim ( , ) ( , )
2h h

hV t h x V t xV t x V t x V t x
h h→ →

− −+ −
= ≤ = −  

            1 3
1 (|| ||) : (|| ||)
2

x xα α≤ − = − . 

If (14.8) holds globally, obviously j Kα ∞∈ , therefore, (14.9) and (14.10) hold 

globally. If (14.1) is an autonomous system, we have 0 0( ; , ) ( ; )x t t x x t t x= − . Then,  

0 0

0 0 0 0
0 0

1 1( , ) : sup (|| ( ; , ) ||) exp{ } sup (|| ( ; ) ||) exp{ } ( )
2 2t t

V t x x t t t x t x t x t V xα α
≥ ≥

= + = = , 

is independent of t . □ 
 
Remark 14.9 Compare to the traditional proof, this proof is nonlocal and not so 

complicated. Although the smooth requirement of f  is decreased, the smooth of 

( , )V t x  is also decreased. However, this disadvantage can make up by using the 

method provided by Yuandan Lin, E.D. Sontag and Yuan Wang for the following 
paper.  
Yuandan Lin, E.D. Sontag and Yuan Wang, “A Smooth Converse Lyapunov 
Theorem for Robust Stability” SIAM J. Control and Optimization, vol. 34, no.1 
pp. 124-160, 1996.  

 
 
5. Invariance- like Theorem 
 

In Theorem 14.2, if (14.7) is positive semi-definite, i.e.  

3( , ) ( ) 0V V f t x W x
t x

∂ ∂
+ ≤ − ≤

∂ ∂
, 

where 3( ) 0W x ≥ . Let 3{ | ( ) 0}nS x R W x= ∈ = . The best we can do is that the 
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trajectories of (14.1) approaches S . What additional conditions we can expect for 
UAS is not clear so far. However, the construction of a strict Lyapunov function based 
on this Lyapunov function is recently a research hot line.  
 

Lemma 14.5 (Barbalat’s Lemma) Let : R Rϕ →  be a uniformly continuous 

function on [0, )∞ . Suppose that 
0

lim ( )
t

t
s dsϕ

→∞ ∫  exists and finite. Then, 

( ) 0tϕ →  as t →∞ . 

 
Remark 14.10 Barbalat’s Lemma itself is nothing with (14.1). However, it plays 
important role but having shortcomings for UAS of (14.1) when it connects 
trajectories of (14.1). It has several variations. I hope you do a survey on Barbalat’s 
Lemma if you are interested in this topic.   
 

Theorem 14.4 (LaSalle-Yoshizawa) Let RDV →×∞),0[:  be of 1C  such that 

1 2( ) ( , ) ( )W x V t x W x≤ ≤ ;                     (14.12) 

)(),( 3 xWxtf
x
V

t
V

−≤
∂
∂

+
∂
∂ , 0t∀ ≥ , x D∀ ∈ ,    (14.13) 

where ( ) 0jW x >  ( 1, 2j = ) are positive definite and 3( ) 0W x ≥  is positive 

semi-definite on D . Then, all trajectories 0 0( ; , )x t t x  of the system (14.1) with 

0 2{ | ( ) }rx x B D W x ρ∈ ∈ ⊂ ≤ , where 1|| ||
min ( )
x r

W xρ
=

< , are bounded and satisfy 

3 0 0lim ( ( ; , )) 0
t

W x t t x
→∞

= .                    (14.14) 

Moreover, if all the assumptions hold globally and 1( )W x  is radially unbounded. The 

statement is true for all 0
nx R∈ .   

Proof. Similar to the proof of Theorem 14.1, it can be shown that 

0 2{ | ( ) }rx x B W x ρ∈ ∈ ≤ ,t ρ⊂ Ω  ⇒   

0 0 , 1( ; , ) { | ( ) }t rx t t x x B W xρ ρ∈Ω ⊂ ∈ ≤ rB⊂ , for all 0≥t . 

Hence, 0 0|| ( ; , ) ||x t t x r≤  for all 0≥t . Since ( , ) 0V t x ≤ , ( , )V t x  is non-increasing 

on 0t t≥  along the trajectories 0 0( ; , )x t t x  and bounded below by zero. Therefore, 

0 0lim ( , ( ; , ))
t

V t x t t x
→∞

 exists and finite for each 0 0 2( , ) [0, ) { | ( ) }rt x x B W x ρ∈ ∞ × ∈ ≤ .  
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Now,  

0 0
3 0 0 0 0 0 0 0 0( ( ; , )) ( , ( ; , )) ( , ) ( , ( ; , ))

t t

t t
W x s t x ds V s x s t x ds V t x V t x t t x≤ − = −∫ ∫  . 

It implies,  

0
3 0 0 0 0lim ( ( ; , )) ( , )

t

tt
W x s t x ds t xx

→∞
= < ∞∫ , for each 0 0( , )t x . 

    Next, we need to prove that 3 0 0( ( ; , ))W x t t x  is uniformly continuous in t  on 

0[ , )t ∞ . When 0 2{ | ( ) }rx x B W x ρ∈ ∈ ≤  ⇒  0 0( ; , ) rx t t x B∈ , ( , )f t x  satisfies local 

Lipschitz in x  on the compact set rB , we denote its Lipschitz constant as L . Then,   

for any 1 2 0,t t t≥ , we have  

2 2

1 1
2 0 0 1 0 0 0 0 0 0|| ( ; , ) ( ; , ) || || ( , ( ; , ))|| || ( , ( ; , )) ( , 0)||

t t

t t
x t t x x t t x f s x s t x ds f s x s t x f s ds− ≤ = −∫ ∫  

      2

1
0 0 2 1|| ( ; , ))|| | |

t

t
L x s t x ds L r t t ε≤ ≤ − <∫  

whenever 2 1| |t t
L r
εδ− < = . Therefore, 0 0( ; , )x t t x  is uniformly continuous on 

0[ , )t ∞ . So is 3 0 0( ( ; , ))W x t t x  because 3( )W x  is continuous on the compact set rB , 

so it is uniformly continuous on rB . Then, application of Barbalat’s Lemma yields  

3 0 0lim ( ( ; , )) 0
t

W x t t x
→∞

=  for each 0 0t ≥ , 0 2{ | ( ) }rx x B W x ρ∈ ∈ ≤ .    (14.14) 

If all the assumptions hold globally and 1( )W x  is radially unbounded, for any 

given 0
nx R∈ , there exists 0ρ >  s.t.  

0 2{ | ( ) }rx x B W x ρ∈ ∈ ≤ ,t ρ⊂ Ω . 

The rest of the proof is the same with the local. This completes the proof. □ 
 
Remark 14.11 There is a puzzle for (14.14). Is it uniformly convergent with respect 

to the initial time 0 0t ≥ ? This is not sure from the above proof through Barbalat’s 

Lemma. How to give a rigorous proof is interesting!! Or give a counter-example to 
show that satisfying Barbalat’s Lemma is not uniformly convergent!! Please pay 
attention on this issue because it is fundamental in analysis of time-varying systems.    
 

Remark 14.12 3 0 0lim ( ( ; , )) 0
t

W x t t x
→∞

=  ⇔  0 0 3( ; , ) { | ( ) 0}rx t t x S x B W x→ = ∈ =  as 
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t →∞  ⇒  0 0( , )t x SΩ ⊆ , which is not necessarily invariant! It is big different from 

the case of autonomous systems.  
 
6. Summary  
 
•  Class K  and KL  functions are useful tools in stability analysis of nonlinear 

systems. 

•  Uniform asymptotic stability can be proved using ),( xtV  that may dependent on 

t . However, there should exist 1α , 2α , and 3α K∈ , such that  

||)(||),(||)(|| 21 xxtVx αα ≤≤ ; ||)(||),( 3 xxtV α−≤ . 

   So the bounding functions jα  are independent of t .  

•  For the Invariance-like case, there is a broad open space to explore for research. 
Hope you draw some attention.  

 
Homework 
 
1. Show Lemma 14.3. 
2. Show Lemma 14.4.  
3. Show Lemma 14.5 (Barbalat’s Lemma).  
 


